Dimensjonering av uarmerte murvegger påkjent av vertikal belastning

Mur-Sentret
Forskningsvn. 3b
P.b. 53 Blindern, 0313 OSLO

TIf. 22930760
Faks 22601192
e-post: post@mur-sentret.no Internett: www.mur-sentret.no

murbransjens informasjons- og kompetansesenter

Forord:

Revisjon av Murkatalogen pågår kontinuerlig, men er begrenset til de deler som til enhver tid vurderes å ha størst behov for oppdatering på grunn av endringer i teknologi, produkter eller normative referanser. Revisjonene utgis både i elektronisk form på www.murkatalogen.no og som enkeltdeler i papirutgave, normalt en gang pr. år.

Denne anvisningen erstatter tidligere utgave fra 2000. Anvisningen er oppgradert int. beregningsregler og materialparametre gitt i NS 3475, Prosjektering av murkonstruksjoner. Beregnings- og konstruksjonsregler 2. utgave mai 2004.

Ansvarlig for revisjonen har vært sivilingeniør Geir Wold-Hansen, Mur-Sentret.

ISBN-13: 978-82-92756-00-3 (Murkatalogen)
ISBN-10: 82-92756-00-0 (Murkatalogen)
ISBN-13: 978-82-92756-42-3 (S2)
ISBN-10: 82-92756-42-3 (S2)

Litteraturhenvisninger:

[1] NS 3475, Prosjektering av murkonstruksjoner. Beregnings- og konstruksjonsregler. Standard Norge, 2. utgave mai 2004
[2] NS 3420, Beskrivelsestekster for bygg, anlegg, installasjoner. Del N: Murverk, lettbetongelementer, fliser og puss.
Standard Norge, 3.4 utgave juni 2005

1 Generelt

Denne anvisningen består av dimensjoneringsdiagrammer som angir bæreevne for uarmerte murvegger utsatt for vertikalbelastning. Murverk av teglstein, lettklinker- og porebetongblokk er behandlet. Generelt gjelder bæreevnen veggtverrsnitt som er murt med fylte fuger. Ved utkrassing av fugene må veggens lastbærende tverrsnitt reduseres tilsvarende,
og bæreevnen vil avta. For murverk av tegl gjelder bæreevnen murverk med fugetykkelse inntil 15 mm . For større fugetykkelser skal bæreevnen reduseres. Anvisningen er basert på beregningsregler og materialparametre gitt i NS 3475 [1].

2 Uarmerte vegger og søyler påkjent av aksiallast (og bøyemoment)

2.1 Kapasitet

Kapasiteten for den samlete lastvirkning fra aksialkraft og eventuell horisontallast normalt på veggplanet skal ikke regnes større enn
$N_{c d}=\beta \cdot A_{c} \cdot f_{c d}$
hvor:
$\mathrm{N}_{\mathrm{cd}}=$ vertikallastkapasiteten
$\beta=$ reduksjonsfaktor for eksentrisiteter og slankhet
$A_{c}=$ virksomt areal av lastbærende tverrsnitt
$f_{c d}=$ murverkets dimensjonerende trykkfasthet
Det skal foretas kapasitetskontroller ved veggtopp og innenfor midtre femtedel av konstruksjonens høyde.

2.1.1 Reduksjonsfaktoren β

Reduksjonsfaktoren β gir et uttrykk for hvor stor andel man har igjen av tverrsnittets areal for opptak av vertikallast når det er korrigert for eksentrisiteter fra laster, geometriske avvik og utbøyning pga. slankhet.

Reduksjonsfaktor i topp av veggen β_{i} bestemmes av uttrykket:
$\beta_{i}=1-2 \cdot e_{i} / h_{c}$
hvor:
$\mathrm{e}_{\mathrm{i}}=$ total eksentrisitet i topp av veggen bestemt etter kap. 2.4
$h_{c}=$ veggtykkelse av lastbærende tverrsnitt.
Reduksjonsfaktor i midtre femtedel av veggen, β_{m} bestemmes etter fig. 2.1 som en funksjon av veggens effektive slankhet λ_{e}, og total eksentrisitet $e_{m} i$ midtsnittet relatert til veggtykkelsen av lastbærende tverrsnitt h_{c}.
$\lambda_{e}=$ konstruksjonens effektive slankhet

$$
=\left(l_{e} / h_{e}\right) \cdot\left(1000 \cdot f_{c n} / E_{c n}\right)^{0,5}
$$

hvor:
$I_{e}=$ beregningsmessige knekklengde bestemt etter kap. 2.2

Fig. 2.1 Reduksjonsfaktor β_{m} som funksjon av λ_{e} og e_{m} / h_{c}

```
\(h_{e}=\) effektiv veggtykkelse ved slankhetsberegning,
    bestemt etter kap. 2.3
\(\mathrm{f}_{\mathrm{cn}}=\) murverkets karakteristiske fasthet for opp
    stredende trykkpåkjenning
\(E_{c n}=\) murverkets karakteristiske elastisitetsmodul for
    opptredende trykkpåkjenning
og
\(e_{m}=\) total eksentrisitet i kritisk midtre femtedel av
    konstruksjonshøyden bestemt etter kap. 2.4
\(h_{c}=\) veggtykkelse av lastbærende tverrsnitt
```

NS 3475 [1] gir følgende begrensninger på slankheten for trykkpåkjente murkonstruksjoner:

for murverk av teglstein	$\mathrm{I}_{e} / \mathrm{h}_{\mathrm{e}} \leq$	27
for murverk av andre murprodukter	$\mathrm{I}_{\mathrm{e}} / \mathrm{h}_{\mathrm{e}} \leq$	23

2.1.2 Murverkets tverrsnittsareal A_{c}

 Murverkets tverrsnittsareal A_{c} står for det arealet av veggen som blir belastet. For en massiv vegg inngår tverrsnittets totale areal, for en skallmurvegg med bare den ene vangen belastet inngår kun tverrsnittsarealet av denne vangen.
2.1.3 Murverkets dimensjonerende trykkfasthet $f_{c d}$

 Den dimensjonerende trykkfastheten $f_{c d}$ er gitt som murverkets karakteristiske trykkfasthet f_{cn} dividert med materialkoeffisienten γ_{m}. Dimensjonerende trykkfasthetvil variere mellom de ulike stein-/blokkmaterialer og med mørtelkvaliteten.

2.2 Knekklengden (I_{e})

For murte vegger påkjent av aksiallast bestemmes knekklengden I_{e} ut fra konstruksjonshøyden H etter følgende uttrykk:

$$
I_{e}=k \cdot H
$$

Reduksjonsfaktoren k bestemmes etter tabell 2.2 avhengig av konstruksjonens fastholdelse i bunn og topp og av evt. sideveis avstivning av tilstøtende konstruksjoner. Det forutsettes at bjelkelag og betongdekker har en oppleggsdybde på den bærende murkonstruksjonen på minst 80 mm .
For vegger som er fastholdt langs bunn og topp av dekkekonstruksjoner regnes normalt knekklengden lik $0.75 \cdot \mathrm{H}$ og $1.00 \cdot \mathrm{H}$ ved hhv. betongdekker og trebjelkelag. For at det skal kunne regnes med fastholdelse av veggen langs én eller begge vertikalrender, forutsettes at veggen er murt i forband med eller på annet vis effektivt forbundet med tverravstivende konstruksjon. Tverravstivende konstruksjon skal videre ha en stivhet (El) som er minst tre ganger selve veggens stivhet i aktuell utknekningsretning.

Fastholdelse	Reduksjonsfaktor k							
Bunn og topp - Trebjelkelag - Betongdekker ${ }^{1)}$					1,00 0,75			
Bunn og topp samt én eller begge vertikalrender	Forholdstall mellom vegglengde og vegghøyde L / H							
	0,2	0,4	0,6	0,8	1,0	1,5	2,0	$\geq 4,0$
3 -sidig ${ }^{2)}$								
- Trebjelkelag	0,30	0,59	0,76	0,85	0,90	0,95	0,97	1,00
- Betongdekker ${ }^{1)}$	0,30	0,54	0,64	0,68	0,71	0,73	0,74	0,75
4-sidig ${ }^{3)}$								
- Trebjelkelag	0,10	0,20	0,30	0,40	0,50	0,70	0,85	1,00
- Betongdekker ${ }^{1)}$	0,10	0,20	0,30	0,40	0,48	0,61	0,69	0,75

${ }^{1)}$ Angitte tallverdier for vegg fastholdt mellom betongdekker i bunn og topp forutsetter at vertikallastens eksentrisitet i topp av konstruksjonen ikke er større enn 0,25 ganger veggtykkelsen. Er eksentrisiteten større eller oppleggsdybden mindre enn dette benyttes tallverdier som angitt for trebjelkelag.
2) Vegg fastholdt i bunn og topp samt langs én vertikalrand.
${ }^{3)}$ Vegg fastholdt i bunn og topp samt langs begge vertikalrender.

Tabell 2.2

Reduksjonsfaktor k for bestemmelse av veggens knekklengde I_{e}

2.3 Effektiv veggtykkelse (h_{e})

Ved vurdering av knekning beregnes den effektive veggtykkelse for slankhetsberegningene (h_{e}) ut fra stivheten til hele veggkonstruksjonen som inngår. For massiv murvegg regnes den effektive veggtykkelsen lik veggkonstruksjonens nettotykkelse (uten puss). For massive murvegger med vertikale utmurte liseneforsterkninger (ribbevegg), diafragmavegger o.l beregnes effektiv veggtykkelse ut fra tverrsnittets flatetreghetsmoment.
For dobbeltvegger, effektivt sammenbundet med murbindere som har nødvendig styrke og stivhet til å overføre tverrkrefter (både strekk- og trykkrefter) over hulrommet slik at vangene får samme utbøyning, beregnes den effektive veggtykkelsen h_{e} av uttrykket:
$h_{e}=\left(h_{1}^{3}+\left(E_{2} / E_{1}\right) \cdot h_{2}^{3}\right)^{1 / 3}$
der h_{1}, E_{1} og h_{2}, E_{2} er veggdelenes tykkelse og E-modul for hhv. den lastbærende og avstivende veggdelen.

2.4 Eksentrisiteter (e)

Noe av det viktigste som bestemmer murveggers bæreevne er geometriske avvik i form og lastenes angrepspunkt ifht. veggens tyngdepunkt. Ved dimensjonering skal det tas hensyn til alle opptredende eksentrisiteter, både fra aksiallastens skjevstilling og utførelsestoleranser, fra effekt av langtidsdeformasjoner og fra eventuell horisontallast normalt på vegglivet. De ulike deleksentrisitetene summeres og bestemmer lastresultantens beregningsmessige eksentrisitet ifht. veggens tyngdepunkt. Resulterende eksentrisitet skal kontrolleres i to snitt, ved veggtopp og i midtre femtedel av vegghøyden. Det antas normalt at kraftresultanten sentreres mot veggens bunn.

2.4.1 Eksentrisitet ved dekkeopplegg i topp av murvegg (e_{i})

Total eksentrisitet ved dekkeopplegg i topp av murvegg bestemmes etter følgende uttrykk:
$e_{i}=e_{N}+e_{\text {Mi }}+e_{a} \geq 0,05 \cdot h_{c}$
hvor
$\mathrm{e}_{\mathrm{N}}=$ aksiallastens eksentrisitet i topp av vegg bestemt etter fig. 2.4.3
$\mathrm{e}_{\text {мi }}=$ eksentrisitet fra innspenningsmoment i topp av konstruksjonen
$\mathrm{e}_{\mathrm{a}}=$ utilsiktet eksentrisitet pga. utsettingsavvik eller skjevheter ved oppmuring, bestemt etter punkt 2.4.3

2.4.2 Eksentrisitet i midtre femtedels snitt av konstruksjonshøyden (e_{m})

Det antas at veggens kritiske snitt med tanke på knekning ligger innenfor midtre femtedel av konstruksjonshøyden.
Total eksentrisitet i snittet bestemmes etter følgende uttrykk:
$e_{m} \quad=0,6 \cdot e_{N}+e_{M m}+e_{a}+e_{c r} \geq 0,05 \cdot h_{c}$
hvor
e_{N} og $\mathrm{e}_{\mathrm{a}}=$ som for eksentrisitet i topp av vegg
$\mathrm{e}_{\mathrm{Mm}} \quad=$ eksentrisitet fra feltmoment i kritisk midtsnitt
$e_{\text {cr }} \quad=$ krypavhengig eksentrisitet

Som fremgår av uttrykkene for e_{i} og e_{m} skal det alltid regnes med en minimumseksentrisitet $\geq 0,05 \cdot h_{c}$, der h_{c} er veggtykkelsen av lastbærende tverrsnitt.

2.4.3 Deleksentrisiteter $e_{N^{\prime}}, e_{M^{\prime}}, e_{a}$ og $e_{c r}$

Aksiallastens eksentrisitet e_{N}

 regnes som avstanden mellom lastresultantens plassering og veggens tyngdepunkt. Det antas normalt en trekantfordelt spenningstilstand rett under dekket som belaster konstruksjonen. Dersom opplegget styres med en smal neoprenlist eller lignende under dekket, kan det antas en rektangulær spenningstilstand. Aksiallast fra ovenforliggende etasjer antas å angripe i veggens/søylens tyngdepunkt.Øvre dekke:

$e_{N}=h / 6$

$e_{N}=0$

$e_{N}=h / 2-d / 3$

$$
e_{N}=h / 2-(k+d / 2)
$$

Figur 2.4.3 a
Beregningsmessig eksentrisitet e_{N} fra aksiallast ved dekkeopplegg, øvre dekke.

Mellomdekke :

$$
e_{N}=\frac{N_{1} \cdot(h / 6)}{N_{1}+N_{2}}
$$

$$
e_{N}=\frac{N_{1} \cdot(\mathrm{~h} / 2-\mathrm{d} / 3)}{\mathrm{N}_{1}+\mathrm{N}_{2}}
$$

$e_{N}=\frac{\left(N_{1}-N_{2}\right) \cdot(h / 6)}{N_{1}+N_{2}+N_{3}} \quad e_{N}=\frac{N_{1} \cdot\left(h / 2-d_{1} / 3\right)-N_{2} \cdot\left(h / 2-d_{2} / 3\right)}{N_{1}+N_{2}+N_{3}}$
Figur 2.4.3 b
Beregningsmessig eksentrisitet e_{N} fra aksiallast ved dekkeopplegg, mellomdekke.

Horisontallastens eksentrisitet $\mathrm{e}_{\mathrm{Mi}} \mathrm{og}_{\mathrm{g}} \mathrm{e}_{\mathrm{Mm}}$

skal ivareta momentpåkjenninger fra evt. horisontallast som belaster veggen. Eksentrisitetene beregnes ut fra opptredende moment og aksiallast i betraktet snitt.

```
I veggtopp: \(\mathrm{e}_{\mathrm{Mi}}=\mathrm{M}_{\mathrm{i}} / \mathrm{N}_{\mathrm{i}}\)
hvor
    \(N_{i}=\) dimensjonerende aksiallast i veggtopp
    \(M_{i}=\) dimensjonerende innspenningsmoment i
    vegg
    topp pga. horisontallast,
    \(M_{i}=q_{f} \cdot b \cdot H^{2} / 12 \leq N_{i} \cdot\left(1-2 \cdot e_{N} / h_{c}\right) \cdot h_{c} / 6\)
I kritisk midtsnitt: \(\quad \mathrm{e}_{\mathrm{Mm}}=\mathrm{M}_{\mathrm{m}} / \mathrm{N}_{\mathrm{m}}\)
hvor
    \(\mathrm{N}_{\mathrm{m}}=\) dimensjonerende aksiallast i midtsnitt, inklu-
        sive veggens egenlast
    \(\mathrm{M}_{\mathrm{m}}=\) dimensjonerende feltmoment i midtsnitt av
        vegg, beregnet ut fra opptredende innspen
        ningsmomenter i bunn og topp
    \(M_{m}=\left(q_{f} \cdot b \cdot H^{2} / 8\right)-0.5 \cdot\left(M_{i}+M_{u}\right)\)
    \(M_{u}=\) dimensjonerende innspenningsmoment \(i\)
        bunn av vegg pga. horisontallast,
    \(M_{u}=q_{f} \cdot b \cdot H^{2} / 8 \leq N_{u} \cdot h_{c} / 6\)
```


Utilsiktet eksentrisitet e_{a} skal ta hensyn til evt. utsettingsavvik eller skjevheter ved oppmuring, og forutsettes å opptre samtidig med øvrige lasteksentrisiteter. Eksentrisiteten skal ikke regnes mindre enn $I_{e} / 600,450$ eller 300 for hhv. toleranseklasse B, C og D (tidligere 2, 3 og 4) etter NS 3420 [2].
Tilleggseksentrisiteten e_{a} skal heller ikke regnes mindre enn lokalt overflateavvik for spesifisert toleranseklasse ved største angitte målelengde ($2,0 \mathrm{~m}$) etter NS 3420 [2].

Toleranse- klasse	Tilleggseksentrisitet e_{a} $/ 600 \geq \pm 3 \mathrm{~mm}$
B	$e_{a}=l_{e} / 600 \geq \pm 3 \mathrm{~mm}$
C	$e_{a}=I_{e} / 450 \geq \pm 5 \mathrm{~mm}$
D	$e_{a}=I_{e} / 300 \geq \pm 8 \mathrm{~mm}$

Krypavhengig eksentrisitet $e_{\text {or }}$ skal ivareta langtidsdeformasjoner (kryp) i konstruksjonen. Størrelsen på krypet varierer med de ulike murmaterialene. For slanke trykkstaver med bøyemoment gir krypet en økt utbøyning. Denne omregnes til en krypavhengig eksentrisitet etter uttrykket
$\mathrm{e}_{\mathrm{cr}}=\varepsilon_{c o} \cdot \varphi_{0} \cdot\left(\mathrm{l}_{\mathrm{e}} / \mathrm{h}_{\mathrm{e}}\right) \cdot\left(\mathrm{h}_{\mathrm{c}} \cdot\left(0,6 \cdot \mathrm{e}_{\mathrm{N}}+\mathrm{e}_{\mathrm{Mm,g}}+\mathrm{e}_{\mathrm{a}}\right)\right)^{0,5}$ hvor
$\varepsilon_{\mathrm{co}}=$ murverkets trykktøyning idét maksimalspenningen oppnås, se tillegg A
$\varphi_{0}=$ murverkets normerte kryptall, etter tabell under

Murverk	Kryptall φ_{0}
Tegl/lettegl	0,5
Lettklinkerblokk	2,0
Porebetongblokk	1,5
Betongblokk/betongmurstein	1,5

$\mathrm{e}_{\mathrm{Mm}, \mathrm{g}}=$ eksentrisitet fra feltmoment pga. lastvirkning fra permanente laster. Settes lik «0» ved vindlast

3. Uarmerte vegger påkjent av begrenset aksiallast
 $\left(\mathrm{N}_{\mathrm{f}} \leq 0,15 \cdot \beta_{0} \cdot \mathrm{~A}_{\mathrm{c}} \cdot \mathrm{f}_{\mathrm{cd}}\right)$

Når vertikallasten N_{f} er liten i forhold til tverrsnittets kapasitet for sentrisk ($e_{i}=0$) aksiallast, $N_{f} \leq 0,15 \cdot \beta_{0} \cdot A_{c} \cdot f_{c d}$, kan tverrsnittets kapasitet for samtidig bøye-moment beregnes uten hensyn til knekning.
Kapasitetskontroll kan da utføres etter NS 3475 [1] pkt. 12.5 Vegger og søyler med begrenset aksialkraft, beregnet med bøye- eller buevirkning (der dette er relevant).
Det henvises for øvrig til Murkatalogens anvisning S1 "Dimensjonering av murvegger påkjent av horisontalbelastning"

3.1 Kapasitet ved ren bøyning

Kapasiteten for bøyemoment fra horisontallast og samtidig opptredende aksiallast beregnes etter uttrykket:
$M_{\text {tdy }}=\left(f_{\text {tdy }}+N_{f} / A_{c}\right) \cdot b \cdot h_{c}{ }^{2} / 6$
hvor:
$\mathrm{f}_{\text {tdy }}=$ murverkets dimensjonerende bøyestrekkfasthet
b = veggens bredde i betraktet snitt
$\mathrm{N}_{\mathrm{f}}=$ opptredende aksiallast
Ved beregning av momentkapasiteten skal det tas hensyn til aksiallastens eksentrisitet e_{N} i topp av konstruksjonen og utilsiktet eksentrisitet e_{a} iht. kap 2.4.3.

I feltmidte gir dette:
For vindsug, redusert momentkapasitet
$\Delta M_{\text {tdy }}=-N_{i} \cdot\left(e_{a}+0,6 e_{N} \cdot\left(N_{i} / N_{m}\right)\right)$
For vindtrykk, økt momentkapasitet
$\Delta M_{\text {tdy }}=+N_{i} \cdot\left(-e_{a}+0,6 e_{N} \cdot\left(N_{i} / N_{m}\right)\right)$

Fig. 3.1
Bøyevirkning i horisontalbelastet vegg med vertikalt spenn

Opptredende moment fra horisontallasten beregnes med hensyntagen til innspenningseffekt fra vertikallast som vist i kap. 2.4.3.

3.2 Kapasitet ved buevirkning

Vegg påkjent av aksiallast og samtidig virkende horisontallast kan, under forutsetning av at veggen har uforskyvelige opplegg i bunn og topp, antas å fungere som en vertikal trykkbue. Beregningsmodellen baserer seg på at veggen kan betraktes som en treleddbue, der den ytre horisontallasten q_{f} bæres av buens indre trykkresultant.
$N_{f} \cdot z=\left(q_{f} \cdot H^{2} / 8\right)$
hvor:
$\mathrm{N}_{\mathrm{f}}=$ opptredende aksiallast
z = trykkbuens indre kraftarm med hensyntagen til opptredende eksentrisiteter $\mathrm{e}_{\mathrm{N}}, \mathrm{e}_{\mathrm{a}}$ og horisontal utbøyning fra 2 . ordens effekter e_{z}. Trykkbuen antas å ha en trekantfordelt trykkspenning over en trykksonehøyde på 0,2 $\cdot h_{c}$ og en randtrykkspenning lik $1,5 \mathrm{f}_{\mathrm{cdy}}$
$=0,87 \cdot h_{c}-e_{a}-e_{z} \pm 0,6 \cdot e_{N}$
$e_{z} \approx 0,1 \cdot H^{2} \cdot \varepsilon_{\text {cuy }} / h_{c}$
$\varepsilon_{\text {cuy }}=$ murverkets maksimaltøyning

Fig. 3.2
Buevirkning i horisontalbelastet vegg med vertikalt spenn

$4 \quad$ Bruk av kapasitetsdiagrammene

4.1 Generelt

Det øverste diagrammet på hver side gir vertikallastkapasiteten for uarmerte vegger og søyler påkjent av aksiallast (og bøyemoment), beregnet etter kap. 2.
De nederste diagrammene på hver side gir horisontallastkapasitet for uarmerte vegger med begrenset aksiallast $\left(N_{f}>0,15 \cdot \beta_{0} \cdot A_{c} \cdot f_{c d}\right)$, beregnet med bøye- og buevirkning etter kap. 3.

Følgende forutsetninger er innlagt/medtatt i diagrammene:

- Utførelse med normal kontroll, materialkoeffisient $\gamma_{M}=2,3$
- Utilsiktet eksentrisitet $\mathrm{e}_{\mathrm{a}}=\mathrm{I}_{\mathrm{e}} / 450 \geq \pm 5 \mathrm{~mm}$ (toleranseklasse C etter NS 3420 [2])
- Krypavhengig eksentrisitet $\mathrm{e}_{\text {cr }}$ (kryptall φ_{0} etter punkt 2.4.3)
- Materialparametre valgt ut NS 3475 [1].
- For murverk av tegl gjelder bæreevnen fugetykkelser inntil 15 mm . For større fugetykkelser skal bæreevnen for vertikallast reduseres iht tabell under

Fugetykkelse (mm)	15	20	25	30
Reduksjons- faktor	1,00	0,90	0,75	0,60

Materialkoeffisient $\gamma_{M}=2,3$ forutsetter at det benyttes fabrikkfremstilt funksjonsmørtelmørtel, og at leveransene av stein/blokk og murmørtel skjer iht. kvalitetsplan som dokumenterer produktenes overensstemmelse med spesifiserte krav til fasthet og samvirke iht. gjeldene produkt- og prøvestandarder. Dersom dette ikke er ivaretatt skal det benyttes materialkoeffisient $\gamma_{M}=2,6$. De avleste kapasiteter skal da reduseres med faktoren 2,3 / 2,6 $=0,88$.

4.2 For ren vertikallast

1.Velg en diagramside som samsvarer med den gitte konstruksjon.
2.Ut fra vegghøyden H, dekker som belaster veggen (betong eller trebjelkelag) og evt. sidestøtte fra tverravstivede vegger vurderes veggens knekklengde $I_{\mathrm{e}}=\mathrm{k} \cdot \mathrm{H}$ etter punkt 2.2.
3.Vertikallastens eksentrisitet e_{N} ved veggtopp beregnes etter punkt 2.4.3.
4.Krysningspunktet mellom I_{e} og $e_{i}=e_{N}$ i det øverste diagrammet gir dimensjonerende vertikallastkapasitet. Verdier mellom de ulike linjer kan interpoleres.

4.3 For samtidig vertikalog horisontallast

Eksentrisitet fra samtidig virkende horisontallast er vanskelig å behandle i samme diagram som ren vertikallast, ettersom lastvirkningen er forskjellig for vindtrykk eller vindsug og gir ulik eksentrisitet i topp og midt på veggen. Bruksprosedyre blir som følger:
1.Som 4.2, punkt 1.
2.Som 4,2, punkt 2.
3.Som 4.2, punkt 3.
4.Ut fra veggens geometri bestemmes hvor mye av horisontallasten som må opptas i veggens vertikale spennretning $\left(q_{f}\right)$. (Dersom man har vertikale tverrvegger eller -søyler, og veggen kan spenne mellom disse for opptak av hele horisontallasten, kan veggen kontrolleres for ren vertikallast som ved 4.2, punkt 4.)
5. Dersom vertikallasten er liten ($N_{f} \leq 0,15 \cdot N_{d}$ for kurve $e_{N}=0$ i det øverste diagrammet på siden), kan veggen kontrolleres for bøye- eller buevirkning etter de nedre diagrammene.
Gå til pkt. 4.3.1.
For større laster må knekning vurderes og det øvre diagrammet benyttes, gå til pkt. 4.3.2.

4.3.1 Kapasitetskontroll ved liten vertikallast

$$
\left(N_{f} \leq 0,15 \cdot \beta_{o} \cdot A_{c} \cdot f_{c d}\right)
$$

6a. Diagrammene gir maksimal tillatt horisontallast q_{f}, både for bøye- og buevirkning med vertikal spenn retning og sentrisk aksiallast ($e_{N}=0$). Veggens kapasitet er den største av disse. Dersom $e_{N} \neq 0$ skal de avleste verdier for q_{f} korrigeres med faktorene gitt nederst på diagramsiden. NB! Bruk av buevirkning forutsetter uforskyvelige opplegg av veggen.

4.3.2 Kapasitetskontroll ved aksiallast
 $$
N_{f}>0,15 \cdot \beta_{o} \cdot A_{c} \cdot f_{c d}
$$

En kapasitetsvurdering vil kreve noe «håndregning» etter prosedyren gitt under.

6b.Tilleggseksentrisitet fra horisontallast ($\mathrm{e}_{\mathrm{Mi}} \circ \mathrm{og} \mathrm{e}_{\mathrm{Mm}}$) beregnes og kapasitetskontroll for vindtrykk og -sug beregnes som gitt under.

Påkjenning fra vindtrykk:

Momentet fra vindtrykk gir en økning av lasteksentrisiteten ved veggtopp, men en reduksjon midt på veggen. Kapasitetskontroll foretas derfor bare i veggtopp.

- Tilleggseksentrisiteten fra vindtrykk e_{mi} beregnes etter punkt 2.4.3.
- Total eksentrisitet i veggtopp $e_{i}=e_{N}+e_{\text {мі }}$ beregnes og kapasitetskontroll foretas etter diagrammet ved knekklengde $I_{e}=0$.

Påkjenning fra vindsug:
Momentet fra vindsug gir en reduksjon av lasteksentrisiteten ved veggtopp, men en økning midt på veggen. Kapasitetskontroll foretas derfor bare i veggmidte.

- Tilleggseksentrisiteten fra vindsug e_{Mm} i veggmidte beregnes etter punkt 2.4.3.
- En omregnet total eksentrisitet i veggtopp $e_{i}=e_{N}$ $+\left(\mathrm{e}_{\mathrm{Mm}} / 0.6\right)$ beregnes og kapasitetskontroll foretas etter diagrammet ved aktuell knekklengde I_{e}.

4.4 Eksempler

4.4.1 Eksempel 1

En innvendig $3,0 \mathrm{~m}$ høy vegg av 150 mm lettklinkerblokk, fasthetsklasse 3, belastes av et kontinuerlig plasstøpt betongdekke. Det er ingen avstivende tverrvegger eller søyler. Ugunstigste plassering av nyttelast gir en dimensjonerende last fra hver side på hhv. 45 og $10 \mathrm{kN} / \mathrm{m}$, totalt $55 \mathrm{kN} / \mathrm{m}$. Det benyttes en fabrikkfremstilt mørtel i klasse M10, normal utførelseskontroll, toleranseklasse 3. Sjekk veggens kapasitet.

Benytter diagram side 29.
Veggens knekklengde $\mathrm{I}_{\mathrm{e}}=\kappa \cdot \mathrm{H}=0,75 \cdot 3,0=2,25 \mathrm{~m}$ Total eksentrisitet fra vertikallast i veggtopp er:

$$
e_{N}=[(45 \cdot 150 / 6)-(10 \cdot 150 / 6)] /(45+10)=15.9 \mathrm{~mm}
$$

$\mathrm{I}_{\mathrm{e}}=2,25 \mathrm{og} \mathrm{e}_{\mathrm{N}}=15.9 \mathrm{~mm}$ gir fra diagrammet at veggens kapasitet er $110 \mathrm{kN} / \mathrm{m}$, dvs. OK!

Veggen blir påført last fra ny vegg/etasje. Tilleggslasten på $30 \mathrm{kN} / \mathrm{m}$ antas å ha "0" eksentrisitet i bunn av vegg over. Total eksentrisitet i veggtopp blir nå

$$
\begin{aligned}
\mathrm{e}_{\mathrm{N}}= & {[30 \cdot 0+(45 \cdot 150 / 6)-(10 \cdot 150 / 6)] /(30+45+10)=} \\
& 10.3 \mathrm{~mm} \\
\mathrm{I}_{\mathrm{e}}= & 2,25 \mathrm{og} \mathrm{e} \mathrm{e}_{\mathrm{N}}=10.3 \mathrm{~mm} \text { gir at veggens kapasitet } \\
& \text { er } 115 \mathrm{kN} / \mathrm{m}, \text { dvs. OK! }
\end{aligned}
$$

4.4.2 Eksempel 2

En innvendig 4,0 m høy ikke-bærende skillevegg er oppført i 200 mm lettklinkerblokk, fasthetsklasse 3. Det er ingen avstivende tverrvegger eller søyler, slik at veggen må spenne vertikalt mellom gulv og tak.
Fabrikkfremstilt mørtel i klasse M10, normal utførelseskontroll, toleranseklasse 3 . Sjekk veggens kapasitet mot innvendig vindlast.
Benytter diagram side 31.
Ettersom vertikallasten her er «0», benyttes de nederste diagrammene for liten vertikallast.
Med $e_{N}=0$ er maksimal dimensjonerende horisontallast q_{f} for både trykk- og sugpåkjenning $0,38 \mathrm{kN} / \mathrm{m}^{2}$. Veggen får last fra et dekkelement med opplegg over hele veggens bredde. Dimensjonerende belastning fra dekket er $20 \mathrm{kN} / \mathrm{m}$. Vertikallastens eksentrisitet ved veggtopp $e_{N}=30 \mathrm{~mm}$.

Sjekk veggens kapasitet mot innvendig vindlast.
De nederste diagrammene for liten vertikallast gir følgende:

Kapasitet med bøyevirkning:

Vindsug:
Diagram med $e_{N}=0$ gir $q_{f}=0,95 \mathrm{kN} / \mathrm{m}^{2}$.
Korreksjon for eksentrisitet e_{N} i veggtopp gir:
$\Delta q_{f}=-\left[20 \cdot 0,03 / 4,0^{2}\right] \cdot[\{(4,8 \cdot 20) /(20+0,7 \cdot 4)\}+$ $1,2]=-0,20 \mathrm{kN} / \mathrm{m}^{2}$
Dvs. maksimalt vindsug er 0,95-0,20 $=0,75 \mathrm{kN} / \mathrm{m}^{2}$
Vindtrykk:
Diagram med $e_{N}=0$ gir $q_{f}=0,95 \mathrm{kN} / \mathrm{m}^{2}$.
Korreksjon for eksentrisitet e_{N} i veggtopp gir:
$\Delta \mathrm{q}_{\mathrm{f}}=+\left[20 \cdot 0,03 / 4,0^{2}\right] \cdot[\{(4,8 \cdot 20) /(20+0,7 \cdot 4)\}$
$-1,2]=+0,11 \mathrm{kN} / \mathrm{m}^{2}$
Dvs. maksimalt vindtrykk er $0,95+0,11=1,06 \mathrm{kN} / \mathrm{m}^{2}$

Kapasitet med buevirkning:

Vindsug:
Diagram med $e_{N}=0$ gir $q_{f}=1,50 \mathrm{kN} / \mathrm{m}^{2}$. Korreksjon for eksentrisitet e_{N} i veggtopp gir:
$\Delta q_{f}=-4,8 \cdot 20 \cdot 0,03 / 4,0^{2}=-0,18 \mathrm{kN} / \mathrm{m}^{2}$
Dvs. maksimalt vindsug er $1,50-0,18=1,32 \mathrm{kN} / \mathrm{m}^{2}$

Vindtrykk:
Diagram med $e_{N}=0$ gir $q_{f}=1,50 \mathrm{kN} / \mathrm{m}^{2}$. Korreksjon for eksentrisitet e_{N} i veggtopp gir: $\Delta q_{f}=+4,8 \cdot 20 \cdot 0,03 / 4,0^{2}=+0,18 \mathrm{kN} / \mathrm{m}^{2}$ Dvs. maksimalt vindtrykk er $1,50+0,18=1,68 \mathrm{kN} / \mathrm{m}^{2}$

Forutsatt uforskyvelig opplegg, slik at buevirkning kan medregnes, er veggens kapasitet i dette gitt tilfellet gitt av buevirkningen.

4.4.3 Eksempel 3

Et etasjebygg skal oppføres med bærende skallmurvegger i tegl. Prefabrikkerte hulldekker som spenner mellom ytterveggene legges på en stripe av neopren sentrisk plassert på indre bærende teglvange. Bjelker over åpninger utføres som vertikalarmert murverk i $1 / 2$ steins tykkelse. Oppriss av bærende innervange og snitt gjennom skallmurvegg er skjematisk vist under.

Mest belastet mursøyle i 1. etasje antas utført i $21 / 2$ - 1 stein (588.226 mm). Teglstein $45 \mathrm{~N} / \mathrm{mm}^{2}$, mørtelklasse M15.

Belastning fra murbjelke/dekke i 1. etasje $\mathrm{N}_{\mathrm{A}}=120$ kN vil angripe eksentrisk på søyla, mens last fra overliggende etasjer $\mathrm{N}_{\mathrm{C}}=80 \mathrm{kN}$ forutsettes å angripe sentrisk ved søyletopp. Totallast ved søyletopp blir $120+80=200 \mathrm{kN}$.

Tverrsnitt A-A, søyle

Detalj søyletopp

Anvisningen har ingen dimensjoneringsdiagram som direkte behandler dette tilfellet. Som en konservativ tilnærming benyttes diagram side 19 for massiv teglvegg i 226 mm tykkelse.
Veggens knekklengde settes lik etasjehøyden 3,6 m.

Vertikallastens eksentrisitet i veggtopp er
$e_{N}=[(80 \cdot 0)+120 \cdot(113-52)] / 200=36,6 \mathrm{~mm}$
$I_{e}=3,6 \mathrm{~m}$ og $e_{N}=36,6 \mathrm{~mm}$ gir at veggens kapasitet er $550 \mathrm{kN} / \mathrm{m}$
Søylens kapasitet $N_{d}=0,588 \cdot 550=323 \mathrm{kN}$, dvs. OK!
Søylen belastes med samtidig virkende vindlast beregnet til $2,5 \mathrm{kN} / \mathrm{m}$ for både trykk og sug.

Vertikallastkapasitet i veggtopp for samtidig vindtrykk:

Moment i veggtopp ved full innspenning
$M_{i}=q_{f} . H^{2} / 12=2,5 \cdot 3,6^{2} / 12=2,70 \mathrm{kNm}$ $\max . N_{i} \cdot\left(1-2 \cdot e_{N} / h_{c}\right) \cdot h_{c} / 6$
$=200 \cdot 10^{3} \cdot(1-2 \cdot 36,6 / 226) \cdot 226 / 6=5,1$ kNm .
Eksentrisitet fra vindmoment i veggtopp
$e_{M i}=M_{i} / N_{i}=2,70 \cdot 10^{6} / 200 \cdot 10^{3}=13,5 \mathrm{~mm}$.

> Total eksentrisitet i veggtopp er
$e_{i}=e_{N}+e_{\text {мі }}=36,6+13,5=50,1 \mathrm{~mm}$.
$I_{e}=0$ og $e_{N}=50,1$ gir fra diagrammet at veggens kapasitet er 530 kN/m

Søylens kapasitet i veggtopp $N_{d}=0,588 \cdot 530=311$
kN, dvs. OK!
Vertikallastkapasitet for samtidig vindsug:
Moment i veggfot ved full innspenning
$M_{u}=q_{f} \cdot H^{2} / 8=2,5 \cdot 3,6^{2} / 8=4,05 \mathrm{kNm}$ $\max . \mathrm{N}_{\mathrm{u}} \cdot \mathrm{h}_{\mathrm{c}} / 6$
$=206 \cdot 10^{3} \cdot 226 / 6=7,7 \mathrm{kNm}$.
Dimensjonerende feltmoment
$M_{m}=\left(q_{f} \cdot H^{2} / 8\right)-0,5 \cdot\left(M_{i}+M_{u}\right)$
$=4,05-0,5 \cdot(2,70+4,05)=0,68 \mathrm{kNm}$.
Eksentrisitet fra vindmoment i veggmidte
$e_{\mathrm{Mm}}=\mathrm{M}_{\mathrm{Mm}} / \mathrm{N}_{\mathrm{m}}=0,68 \cdot 10^{6} / 203 \cdot 10^{3}=3,3 \mathrm{~mm}$.
En omregnet total eksentrisitet i veggtopp beregnes lik $e_{i}=e_{N}+\left(e_{M m} / 0.6\right)=36,6+3,3 / 0,6=42,1 \mathrm{~mm}$
$l_{e}=3,6 \circ \operatorname{lg~}_{\mathrm{N}}=42,1$ gir fra diagrammet at veggens kapasitet er 510 kN/m

Søylens kapasitet i veggtopp $N_{d}=0,588 \cdot 510=300$ kN, dvs. OK!

5 Kapasitetsdiagrammer

På de etterfølgende sider følger kapasitetsdiagrammer for
teglmurverk
s. 14-26
lettklinkermurverk ...s. 27-41
porebetongmurverk......................................s. 42-47

5.1 Teglmurverk

Kapasitet for horisontallast + liten vertikallast ($\mathrm{N}_{\mathrm{i}} \leq \mathbf{0 , 1 5} \cdot \mathbf{N}_{\mathrm{d} \text {, kurve eN }}=0 \mathrm{~mm}$)
Uten knekningskontroll

Vegg av hulltegl $\mathrm{h}=215 \mathrm{~mm}$			Trykkfasthet murprodukt Mørtelfasthet	$\begin{gathered} 25 \mathrm{~N} / \mathrm{mm}^{2} \\ \mathrm{M} 10 \end{gathered}$
			Murverksfastheter $\mathrm{f}_{\text {cny }} / \mathrm{E}_{\text {cny }} / \mathrm{f}_{\text {try }}$	6,0/6000 / $0,39 \mathrm{~N} / \mathrm{mm}^{2}$
Kapasitet for vertikallast + (evt. horisontallast) Med knekningskontroll				$\mathrm{A}_{\mathrm{c}}=226000 \mathrm{~mm}^{2} / \mathrm{m}$

Uten knekningskontroll

| Bøyevirkning: |
| :--- | :--- | :--- |
| Vindtrykk og -sug, sentrisk last $\left(e_{N}=0\right)$ |

Skallmurvegg av hulltegl

 $\mathrm{h}=104 \mathrm{~mm}+104 \mathrm{~mm}$| Trykkfasthet murprodukt
 Mørtelfasthet | $\mathbf{4 5 ~ N / m m}$
 $\mathbf{M ~ 1 5}$ |
| :--- | :---: |
| Murverksfastheter $\mathrm{f}_{\text {cry }} / \mathrm{E}_{\text {cry }} / \mathrm{f}_{\text {try }}$ | $10,5 / 10500 / 0,70 \mathrm{~N} / \mathrm{mm}^{2}$ |

Kapasitet for vertikallast på en vange + (evt. horisontallast)
Med knekningskontroll

Knekklengde $I_{\text {e }}$ [m]

$A_{c}=104000 \mathrm{~mm}^{2} / \mathrm{m}$
$h_{e}=\left(104^{3}+104^{3}\right)^{1 / 3}=131 \mathrm{~mm}$

Kapasitet for horisontallast + liten vertikallast ($\mathbf{N}_{\mathrm{i}} \leq \mathbf{0 , 1 5} \cdot \mathbf{N}_{\mathrm{d}}$, kurve eN $=0 \mathrm{~mm}$) Uten knekningskontroll

Bøyevirkning:

Vindtrykk og -sug, sentrisk last ($\mathrm{e}_{\mathrm{N}}=0$)
Kapasitet pr. vange

Buevirkning:
Forutsatt uforskyvelig opplegg i bunn og topp
Vindtrykk og -sug, sentrisk last ($\mathrm{e}_{\mathrm{N}}=0$)
Kapasitet pr. vange
$\mathrm{q}_{\mathrm{f}}\left[\mathrm{kN} / \mathrm{m}^{2}\right]$

Vegghøyde H [m]

Korreksjon for eksentrisitet $\mathrm{e}_{\mathrm{N}} \mathbf{i}$ veggtopp:

Vindsug:	$\Delta q_{f}=-\frac{N_{i} \cdot e_{N}}{H^{2}} \cdot\left(\frac{4,8 \cdot N_{i}}{N_{i}+0,9 \cdot H}+1,2\right)$	$\Delta q_{f}=-\frac{4,8 \cdot N_{i} \cdot e_{N}}{H^{2}}$	$e_{N} \cdot N_{i}$
Vindtrykk:	$\Delta q_{f}=+\frac{N_{i} \cdot e_{N}}{H^{2}} \cdot\left(\frac{4,8 \cdot N_{i}}{N_{i}+0,9 \cdot H}-1,2\right)$	$\Delta q_{f}=+\frac{4,8 \cdot N_{i} \cdot e_{N}}{H^{2}}$	$-1 /$

Skallmurveggsøyle av hulltegl $b \cdot h=588 \cdot 104 / 226+104 \mathrm{~mm}$					Try
Kapasitet for vertikallast + (evt. horisont Med knekningskontroll					

Kapasitet for horisontallast + liten vertikallast ($\mathrm{N}_{\mathrm{i}} \leq \mathbf{0 , 1 5} \cdot \mathrm{N}_{\mathrm{d} \text {, kurve eN }}=0 \mathrm{~mm}$)
Uten knekningskontroll

Buevirkning:

Forutsatt uforskyvelig opplegg i bunn og topp
Vindtrykk og -sug, sentrisk last $\left(e_{N}=0\right)$

Korreksjon for eksentrisitet $\mathbf{e}_{\mathrm{N}} \mathbf{i}$ veggtopp:

Vindsug:	$\Delta q_{f}=-\frac{N_{i} \cdot e_{N}}{H^{2}} \cdot\left(\frac{4,8 \cdot N_{i}}{N_{i}+0,8 \cdot H}+1,2\right)$	$\Delta q_{f}=-\frac{4,8 \cdot N_{i} \cdot e_{N}}{H^{2}}$	$e_{N} \cdot N_{i}$
Vindtrykk:	$\Delta q_{f}=+\frac{N_{i} \cdot e_{N}}{H^{2}} \cdot\left(\frac{4,8 \cdot N_{i}}{N_{i}+0,8 \cdot H}-1,2\right)$	$\Delta q_{f}=+\frac{4,8 \cdot N_{i} \cdot e_{N}}{H^{2}}$	

	Trykkfasthet murprodukt Mørtelfasthet	$\begin{gathered} 3 \mathrm{~N} / \mathrm{mm}^{2} \\ \mathrm{M} 10 \end{gathered}$
(eks. Leca- og Scan Standardblokk)	Murverksfastheter $\mathrm{f}_{\text {cry }} / \mathrm{E}_{\text {cry }} / \mathrm{f}_{\text {try }}$	$2,45^{1} / 3700 / 0,20 \mathrm{~N} / \mathrm{m}$

Kapasitet for vertikallast + (evt. horisontallast)

Knekklengde I_{e} [m]

$A_{c}=150000 \mathrm{~mm}^{2} / \mathrm{m}$
${ }^{1)}$ Diagram gjelder fulle lim- eller mørtelfuger, delte fuger gir reduksjonsfaktor 0,75
Kapasitet for horisontallast + liten vertikallast ($\mathbf{N}_{\mathrm{i}} \leq \mathbf{0 , 1 5} \cdot \mathrm{N}_{\mathrm{d}, \text { kurve e } \mathrm{N}=0 \mathrm{~mm})}$)
Uten knekningskontroll

Vegghøyde H [m]

Buevirkning:

Forutsatt uforskyvelig opplegg i bunn og topp
Vindtrykk og -sug, sentrisk last ($\mathrm{e}_{\mathrm{N}}=0$) $\mathrm{q}_{\mathrm{f}}\left[\mathrm{kN} / \mathrm{m}^{2}\right]$

Vegghøyde H [m]

Korreksjon for eksentrisitet $\mathrm{e}_{\mathrm{N}} \mathrm{i}$ veggtopp:

Vindsug:	$\Delta q_{f}=-\frac{N_{i} \cdot e_{N}}{H^{2}} \cdot\left(\frac{4,8 \cdot N_{i}}{N_{i}+0,6 \cdot H}+1,2\right)$	$\Delta q_{f}=-\frac{4,8 \cdot N_{i} \cdot e_{N}}{H^{2}}$
Vindtrykk:	$\Delta q_{f}=+\frac{N_{i} \cdot e_{N}}{H^{2}} \cdot\left(\frac{4,8 \cdot N}{N_{i}+0,6 \cdot H}-1,2\right)$	$\Delta q_{f}=+\frac{4,8 \cdot N_{i} \cdot e_{N}}{H^{2}}$

${ }^{1)}$ Kapasiteter er beregnet med skjæroverføring (samvirke) mellom lettklinkervanger via isolasjonsskummet, varierende ut fra belastningstype, iht. produktdokumentasjon fra maxit as

1) Kapasiteter er beregnet med skjæroverføring (samvirke) mellom lettklinkervanger via isolasjonsskummet, varierende ut fra belastningstype, iht. produktdokumentasjon fra maxit as

Vegg av Scan Isoblokk 25 cm	Trykkfasthet murprodukt Mørtelfasthet	$\mathbf{4} \mathbf{~ N / m m}$ $\mathbf{N} \mathbf{~} \mathbf{1 0}$
	Murverksfastheter $\mathrm{f}_{\text {cny }} / \mathrm{E}_{\text {cny }} / \mathrm{f}_{\text {try }}$	$3,55 / 4150 / 0,25 \mathrm{~N} / \mathrm{mm}^{2}$

Kapasitet for vertikallast + (evt. hor.last)
Med knekningskontroll
En vange belastet: ${ }^{1)}$
Begge vanger belastet: ${ }^{1)}$

Kapasitet for horisontallast + liten vertikallast ($\mathrm{N}_{\mathrm{i}} \leq \mathbf{0 , 1 5} \cdot \mathrm{N}_{\mathrm{d} \text {, kurve eN }}=0 \mathrm{~mm}$)
Uten knekningskontroll
Bøyevirkning: ${ }^{1)}$
En vange med sentrisk vertikallast ($\mathrm{e}_{\mathrm{N}}=0$)
Begge vanger med sentrisk vertikallast ($\mathrm{e}_{\mathrm{N}}=0$)

${ }^{2)}$ For vindsug gjelder kun nedre kurve $\left(\mathrm{N}_{\mathrm{iA}}=0 \mathrm{kN} / \mathrm{m}\right)$
${ }^{1)}$ Kapasiteter er beregnet uten skjæroverføring (samvirke) mellom lettklinkervanger via isolasjonssjiktet.

1) Kapasiteter er beregnet uten skjæroverføring (samvirke) mellom lettklinkervanger via isolasjonssjiktet.

Vegg av porebetongblokk $h=250 \mathrm{~mm}$		Trykkfasthet murprodukt Mørtelfasthet / limt		
		Murverksfastheter $\mathrm{f}_{\text {cny }} / \mathrm{E}_{\text {cny }} / \mathrm{f}_{\text {tny }}$	1,60 ${ }^{1)} / 1300 / 0,14 \mathrm{~N} / \mathrm{mm}^{2}$	
Kapasite Med knekn	et for vertikallast + (evt ningskontroll /m] Knekklengde I_{e} gjelder fulle lim- eller mørtelfuge	t) $\begin{gathered} \mathrm{e}_{\mathrm{N}}= \\ -\quad 0 \mathrm{~mm} \\ -25.0 \mathrm{~mm} \\ -50.0 \mathrm{~mm} \\ -75.0 \mathrm{~mm} \end{gathered}$		Knekklengde $l e=k \cdot H$
Kapasite Uten knekn	t for horisontallast + ningskontroll	$\mathbf{N}_{\mathrm{i}} \leq 0,15 \cdot \mathrm{~N}_{\mathrm{d}, \mathrm{kur}}$	$=0 \mathrm{~mm})$	
Bøyevirk Vindtrykk o Korreksj	g -sug, sentrisk last ($\mathrm{e}_{\mathrm{N}}=0$) jon for eksentrisitet e_{N}	Buevirkning: Forutsatt uforskyvelig op Vindtrykk og -sug, sentri $\mathrm{q}_{\mathrm{f}}\left[\mathrm{kN} / \mathrm{m}^{2}\right]$ Vegghøyde	gg i bunn og ast ($e_{N}=0$) [m]	N_{i} kN / m kN / m kN / m kN / m
Vindsug: Vindtrykk:	$\Delta \mathrm{q}_{\mathrm{f}}=-\frac{\mathrm{N}_{\mathrm{i}} \cdot e_{N}}{\mathrm{H}^{2}} \cdot\left(\frac{4,}{N_{i}+}\right.$ $\Delta \mathrm{q}_{\mathrm{f}}=+\frac{N_{i} \cdot e_{N}}{H^{2}} \cdot\left(\frac{4,8}{N_{i}+}\right.$	$\Delta \mathrm{q}_{\mathrm{f}}=-\frac{4,8 \cdot}{H^{2}}$ $\Delta \mathrm{q}_{\mathrm{f}}=+\frac{4,8}{} \cdot$		

ISBN-13: 978-82-92756-00-3 (Murkatalogen)
ISBN-10: 82-92756-00-0 (Murkatalogen)
ISBN-13: 978-82-92756-42-3 (S2)
ISBN-10: 82-92756-42-3 (S2)

